
An Efficient Algorithm for Update Scheduling in
Streaming Data Warehouses

Bolla Saikiran1, Kolla Morarjee2

1M.Tech Scholar, 2Assistant Professor

Department of Computer Science and Engineering, CMR Institute of Technology
Medchal, Hyderabad, Andhra Pradesh, India

Abstract: Traditional data warehouses are designed to hold the
Historical Data. The data warehouse allows update only policy.
Data Stream is a continuously growing Data from Various
Sources. Update scheduling in streaming data warehouses,
which combines the features of traditional data warehouses and
data stream systems. External sources push append-only data
streams into the warehouse with a wide range of inter arrival
times. Traditional data warehouses are typically refreshed
during downtimes, streaming ware houses are updated as new
data arrive. We explore the model the streaming warehouse
update problem as a scheduling problem, where processes that
load new data into tables, and whose objective is to minimize
data staleness over time. . We choose a scheduling framework
that handles the complications encountered by a stream
warehouse: view hierarchies and priorities, data consistency,
inability to preempt updates, heterogeneity of update jobs
caused by different inter arrival times and data volumes among
different sources, and transient overload. A feature of our
framework is that scheduling decisions do not depend on
properties of update jobs, but rather on the effect of update jobs
on data staleness. We present EDF-P, Max Benefit update
scheduling algorithms and proves that Max Benefit is giving best
performance that EDF-P by minimizing data staleness over the
time.

Keywords : Data warehouse maintenance, Update scheduling,
Data streaming.

I. INTRODUCTION
The Application of Data Stream Mining Demands the Newly
Arrived Data, not on the Historical Data. The Problem is to
Combine Traditional Data Warehouses and Data Stream
Systems[1]. In existing system Data Stream Management
Systems (DSMS) it Supports Simple Analysis and Recently
Arrived Data. Data Depot also combines the Features of
Traditional Data Warehouses and Data Stream Management
System (DSMS).
Traditional data warehouses are updated during downtimes
and store layers of complex materialized views over terabytes
of historical data. On the other hand, Data Stream
Management Systems (DSMS) support simple analyses on
recently arrived data in real time. Streaming warehouses such
as Data Depot these two systems by maintaining a unified
view of current and historical data. This enables a real-time
decision support for business-critical applications that receive
streams of append-only data from external sources.
Applications include: Online stock trading, where recent

transactions generated by multiple stock exchanges are
compared against historical trends in nearly real time to
identify profit opportunities. Credit card or telephone fraud
detection, where streams of point-of-sale transactions or call
details are collected in nearly real time and compared with
past customer behavior. Network data warehouses maintained
by Internet Service Providers (ISPs), which collect various
system logs and traffic summaries to monitor erasure
correcting code in the file distribution preparation to provide
redundancies and guarantee the data constancy[2]. This
construction drastically reduces the communication and
storage overhead as compared to the traditional replication.
The goal of a streaming warehouse is to propagate new data
across all the relevant tables and views as quickly as possible.
Once new data are loaded, the applications and triggers
defined on the warehouse can take immediate action. This
allows businesses to make decisions in nearly real time,
which may lead to increased profits, improved customer
satisfaction, and prevention of serious problems that could
develop if no action was taken. Recent work on streaming
warehouses has focused on speeding up the Extract-
Transform-Load (ETL) process which was explained in
Figure1. This Figure1 also describes the Data flow in Data
Warehouse with the ETL Process[3]. Data coming from
various external sources to the Data Warehouse and loading
into the warehouse tables by utilizing the ETL Process.

Figure 1: Data warehousing with ETL Process.

Bolla Saikiran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1082-1085

www.ijcsit.com 1082

There has also been work on supporting various warehouse
maintenance policies, such as immediate, deferred, and
periodic. However, there has been a little work on choosing,
of all the tables that are now out-of-date due to the arrival of
new data, which one should be updated next. This is exactly
the problem we study in this paper. Immediate view
maintenance may appear to be a reasonable solution for a
streaming[4]. That is, whenever new data arrive, we
immediately update the corresponding “base” table T. After T
has been updated, we trigger the updates of all the
materialized views sourced from T, followed by all the views
defined over those views, and so on. The problem with this
approach is that new data may arrive on multiple streams, but
there is no mechanism for limiting the number of tables that
can be updated simultaneously[5]. Running too many parallel
updates can degrade performance due to memory and CPU-
cache thrashing, disk-arm thrashing, context switching, etc.
This motivates the need for a scheduler that limits the number
of concurrent updates and determines which job to schedule
next.

II. RELATED WORK
This section compares the contributions of this paper with
previous work in three related areas: scheduling, data
warehousing, and data stream management.
Scheduling
The closest work to ours is, which finds the best way to
schedule updates of tables and views in
order to maximize data freshness. Aside from using a
different definition of staleness, our Max Benefit basic
algorithm is analogous to the max-impact algorithm from
Labrinidis and Roussopoulos, as is our “Sum” priority
inheritance technique. Our main innovation is the multi track
Proportional algorithm for scheduling the large and
heterogeneous job sets encountered by a Streaming
warehouse additionally, we propose an update chopping to
deal with transient overload. Another closely related work is
which studies the complexity of minimizing the staleness of a
set of base tables in a streaming warehouse[6]. In general,
interesting scheduling problems are often NP hard in the
offline setting and hard to approximate offline. This
motivates the use of heuristics such as our greedy Max
Benefit algorithm. While we believe that update scheduling
in a streaming warehouse is novel, our solution draws from a
number of recent scheduling results. In particular, there has
been work on real-time scheduling of heterogeneous tasks on
a multiprocessor to address the tension between partitioned
scheduling and global scheduling. The Pair algorithm and its
variants have been proposed when tasks are perceptible,
however we must assume that data loading tasks are
nonpreemptible. Our Proportional algorithm attempts to make
a fair allocation of resources to nonpreemptible tasks in a
multitrack setting, and is the first such algorithm of which we
are aware. Overload management has been addressed in, e.g..
However, these algorithms handle overload by dropping jobs,
while a data warehouse can defer updates for a while, but

cannot drop them. Derived table relationships are similar to
precedence constraints among jobs, e.g., a derived table
cannot be updated until its sources have been updated.
Previous work on scheduling with precedence constraints
focused on minimizing the total time needed to compute a set
of nonrecurring jobs. Our update jobs are recurring, and we
use the notion of freshness delta to determine when a derived
table update should be scheduled[7]. There has also been
work on adding real-time functionality to databases.
However, most of this work focuses on scheduling read-only
transactions to achieve some quality of- service guarantees.
The works closest to ours are and which discuss the
interaction of queries and updates in a firm real-time
database, i.e., how to install updates to keep the data fresh,
but also ensure that read transactions meet their deadlines.
However, their system environments are significantly
different from ours: transactions can be preempted, all tables
in the database are “snapshot” tables, and updates are very
short lived, meaning that they can be deferred until a table is
queried. Similar work has also appeared in the context of web
databases, which aims to balance the quality of service of
read transactions against data freshness. It also assumes a
“snapshot” model rather than our append-only model.
Data Warehousing
There has been some recent work on streaming data
warehousing, including system design, real-time ETL
Processing, and continuously inserting a streaming data feed
at bulk-load speed. These efforts are complementary to our
work they also aim to minimize data staleness, but they do so
by reducing the running time of update jobs once the jobs are
scheduled. A great deal of existing data warehousing research
has focused on efficient maintenance of various classes of
materialized views, and is orthogonal to this paper. In and
discuss consistency issues under various view maintenance
policies. As discussed earlier, maintaining consistency in a
streaming data warehouse is simpler due to the append-only
nature of data streams. There has also been work on
scheduling when to pull data into a warehouse to satisfy data
freshness guarantees. This work does not apply to the push-
based stream warehouses studied in this paper, which do not
have control over the data arrival patterns. Quantifying the
freshness of a data warehouse was addressed in several
works[8]. For instance, Adelberg et al. propose two
definitions: maximum age, which corresponds to the
definition used in this paper, and unapplied update, which
defines staleness as the difference between the current time
and the arrival time of the oldest pending update. Unapplied
update is not appropriate in a real-time stream warehouse that
must handle sources with various arrival rates and inter
arrival times. For example, suppose that two updates have
arrived simultaneously, one containing 2 minutes of recent
data from stream 1, and the other carrying one day of data
from stream 2. Clearly, the table sourced by stream 2 should
be considered more out-of-date, yet both are equal under
unapplied update. Cho and Garcia-Molina propose to
measure the average freshness over time, but their definition

Bolla Saikiran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1082-1085

www.ijcsit.com 1083

of freshness is far simpler than ours: a database object is
assumed to have a freshness of one if it is up-to-date and zero
otherwise.
Data Stream Management
One important difference between a DSMS and a data stream
warehouse is that the former only has a limited working
memory and does not store any part of the stream
permanently. Another difference is that a DSMS may drop a
fraction of the incoming elements during overload, whereas a
streaming data warehouse may defer some update jobs, but
must eventually execute them. Scheduling in DSMS has been
discussed in, but all of these are concerned with scheduling
individual operators inside query plans.

III. SYSTEM MODEL
A streaming data warehouse. Each data stream is generated
by an external source, with a batch of new data, consisting of
one or more records, being pushed to the warehouse with
period Pi[1]. If the period of a stream is unknown or
unpredictable, we let the user choose a period with which the
warehouse should check for new data. Examples of streams
collected by an Internet Service Provider include router
performance statistics such as CPU usage, system logs,
routing table updates, link layer alerts, etc. An important
property of the data streams in our motivating applications is
that they are append-only, i.e., existing records are never
modified or deleted. For example, a stream of average router
CPU utilization measurement may consist of records with
fields, and a new data file with updated CPU measurement
for each router may arrive at the warehouse every 5 minutes.

Figure 2: Streaming Data Warehouse

Warehouse Consistency Following the previous work on data
warehousing, we want derived tables to reflect the state of
their sources as of some point in time[9]. Suppose that D is
derived from T1 and T2, which were last updated at times
10:00 and 10:05, respectively as shown in figure 2. If T1 and
T2 incur arbitrary insertions, modifications, and deletions, it
may not be possible to update D such that it is consistent with
T1 and T2 as of some point in time, say, 10.00.However,
tables in a streaming warehouse are not “snapshots” of the
current state of the data, but rather they collect all the
(append-only) data that have arrived over time. Since the data
are append-only, each record has exactly one “version.” For

now, suppose that data arrive in time stamp order. We can
extract the state of T2 as of time 10:00 by selecting records
with time stamps up to and including 10:00. Using these
records, we can update D such that it is consistent with T1
and T2 as of time 10:00. Figure2 shows T1 and T2 are Base
Tables, Derived table has been created from based tables
namely T3 and again created another derived table T4 created
from table T3.we applied EDFP and Maxbenefit algorithms
on the tables and conducted multiple Experiments. Hence
update job as Ji and priority as pi.
Data Staleness we illustrate the staleness as a function of time
for a base table Ti. Suppose that the first batch of new data
arrives at time 4. Assume that this batch contains records
with time stamps up to time 3.Staleness accrues linearly until
the completion of the first update job at time 5. At that time,
Ti has all the data up to time 3, and therefore its staleness
drops to 2.
Scheduling Model
Let Ji be the update job corresponding to table Ti. For base
tables, the period of Ji is equal to the period of its source
stream. We estimate the period of a Ji corresponding to a
derived table as the maximum period of any of Ti’s
ancestors[10]. For base and derived tables, we define the
freshness delta of Ti, call it _Fi, as the increase in freshness
after Ji is completed. For instance, when the second batch of
new data arrives in (at time 7), the table contains data up to
time 3. Since the update contains data up to time 7, the
freshness delta is 4.
Prioritized EDF (EDF-P)
We tries to order the jobs by assigning priorities. In this
process ties are breaking by deadlines [7]. We estimate the
deadline ri +Pi where ri is the last time Ti’s freshness delta
changed from zero to nonzero, Pi is period of derived table
[7]. EDF-Partitioned Strategy The EDF-partitioned algorithm
assigns jobs to tracks in a way that ensures that each track has
a feasible non preemptive EDF schedule. A feasible schedule
means that if the local scheduler were to use the EDF
algorithm to decide which job to schedule next, all jobs
would meet their deadlines. EDF-partitioned strategy is
compatible with any local algorithm for scheduling individual
tracks[2]. The EDF-partitioned algorithm has some
weaknesses, a collection of jobs with identical periods might
be partitioned among several tracks[11]. The track promotion
condition among these jobs and tracks is the same as the
condition which limits the initial track packing and therefore
no track promotion will be done. the Earliest-Deadline-First
(EDF) algorithm orders released jobs by proximity to their
deadlines. EDF(Earlier Dead Line First) is known to be an
optimal hard real-time scheduling algorithm for single track.
Prioritized EDF orders jobs by their priorities, breaking ties
by deadlines. Here jobs are performed based on the Deadline.
Max Benefit
Max Benefit Recall that the goal of the scheduler is to
minimize the weighted staleness [7]. In this context, the
benefit of executing a job Ji may be defined as pi ∆ Fi, i.e., its
priority weighted freshness delta (decrease in staleness).

Bolla Saikiran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1082-1085

www.ijcsit.com 1084

Similarly, the marginal benefit of executing Ji is its benefit
per unit of execution time: pi ∆ Fi=E∆(Fi). A natural online
greedy heuristic is to order the jobs by the marginal benefit of
executing them. We will refer to this heuristic as Max
Benefit. Since marginal benefit does not depend on the
period, we can use Max Benefit for periodic and a periodic
update jobs. one may argue that Max Benefit ignores useful
information about the release times of future jobs. This
algorithm is used to minimize the weighted staleness.

IV. SYSTEM EVALUATION
Framework to Generate Update Jobs Automatically when the
Environment is a Simulation Environment and it produces a
Bunch of Jobs and Send to Data Warehouse for Every 5mins
automatically.
Table Relational Graph
All the Tables of the Warehouse are devided into two types.
One is Base Table another is a Derived Table (view). Base
Table is the Primary Tables Whenever New Data is Arrived
the tables are updated First. The Derived Tables are the
Views of an SQL Query. The Derived Tables Depends on the
Base (or) Source Tables. This Modules Prepares Dependency
Graph. Assignment Priorities to tables/Views Base and
Derived Tables has to be Assigned Priority Values Based on
Dependency Graph. The Priority Values of Tables are Used
at the Time of Processing (or) Prioritizing Jobs.
Job Partitioning
The System will Recieve a Bulk Number Update Jobs
Among all the Jobs, Which Job has to be Given High Priority
and to avoid Datastaless Job Partioning is Required. The
Module are EDF Partioned Strategy, Leveraging Idle
Resources Via Track Promotion and Proportional Partitioning
Strategy.
Update Chopping
The Traditional of a Single Job Updates all the Jobs into a
Single Queue of Jobs. Lineally all the will be Executed. The
Update Chopping Process Divides the Jobs into Priority Jobs
and Stale Data Jobs. The Stale Data jobs are Given Low
priority. The High Priority Jobs Executed First.
Experiments are conducted with EDFP and Maxbenefit
algorithms for updated scheduling in streaming data
warehouses by creating base tables T1 and T2. Derived table
has been created from based tables namely T3 again created
another derived table T4 created from table T3.we applied
EDFP and Maxbenefit algorithms on these tables and proved
that Maxbenefit giving the accurate results.

V. CONCLUSIONS
In this paper, we motivated, formalized, and solved the
problem of non preemptively scheduling updates in a real-
time streaming warehouse. We proposed the notion of
average staleness as a scheduling metric and presented
scheduling algorithms designed to handle the complex

environment of a streaming data warehouse. We then
proposed a scheduling framework that assigns jobs to
processing tracks and uses basic algorithms to schedule jobs
within a track. The main feature of our framework is the
ability to reserve resources for short jobs that often
correspond to important frequently refreshed tables, while
avoiding the inefficiencies associated with partitioned
scheduling techniques. We have implemented some of the
proposed algorithms in the Data Depot streaming warehouse,
which is currently used for several very large warehousing
projects within AT&T. We tested with EDF-P and Max
Benefit algorithms. Finally we proved that Max Benefit is
giving best performance that EDF-P by minimizing data staleness
over the time. As future work, we plan to extend our
framework with new basic algorithms. We also plan to fine-
tune the Proportional algorithm in our experiments, even the
aggressive version with “all” allocation still exhibits signs of
multiple operating domains, and therefore can likely be
improved upon (however, it is the first algorithm of its class
that we are aware of). Another interesting problem for future
work involves choosing the right scheduling “granularity”
when it is more efficient to update multiple tables together, as
mentioned. We intend to explore the tradeoffs between
update efficiency and minimizing staleness in this context.

REFERENCES
[1] A.Sreeja, I.V, Sailakshmiharitha, N.Bhaskar, “Load Balancer Scheduling

Over Streaming Data in Federated Databases” IJERT, Vol.2.Issue 8,
August 2013.

[2]Lukas Golab, Theodore Johnson, and Vladislav Shkapenyuk,” Scalable
Scheduling of Updates in Streaming Data Warehouses”, IEEE
Transactions On KDE, Vol/24, No.6, June2012.

[3] M.H. Bateni, L. Golab, M.T. Hajiaghayi, and H. Karloff, “Scheduling to
Minimize Staleness and Stretch in Real-time Data Warehouses,” Proc.
21st Ann. Symp. Parallelism in Algorithms and Architectures (SPAA),
pp. 29-38, 2009.

[4] S. Baruah, “The Non-preemptive Scheduling of Periodic Tasks upon
Multiprocessors,” Real Time Systems, vol. 32, nos. 1/2, pp. 9- 20,
2006.

[5] S. Babu, U. Srivastava, and J. Widom, “Exploiting K-constraints to
Reduce Memory Overhead in Continuous Queries over Data Streams,”
ACM Trans. Database Systems, vol. 29, no. 3, pp. 545- 580, 2004.

[6] B. Babcock, S. Babu, M. Datar, and R. Motwani, “Chain: Operator
Scheduling for Memory Minimization in Data Stream Systems,” Proc.
ACM SIGMOD Int’l Conf. Management of Data, /pp. 253-264, 2003.

[7] D. Carney, U. Cetintemel, A. Rasin, S. Zdonik, M. Cherniack, and M.
Stonebraker, “Operator Scheduling in a Data Stream Manager,” Proc.
29th Int’l Conf. Very Large Data Bases (VLDB), pp. 838- 849, 2003.

[8] J. Cho and H. Garcia-Molina, “Synchronizing a Database to Improve
Freshness,” Proc. ACM SIGMOD Int’l Conf. Management of Data, pp.
117-128, 2000.

[9] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel, “Proportionate Progress:
A Notion of Fairness in Resource Allocation,” Algorithmica,vol. 15,
pp. 600-625, 1996.

[10] B. Adelberg, H. Garcia-Molina, and B. Kao, “Applying Update Streams
in a Soft Real-Time Database System,” Proc. ACM SIGMOD Int’l
Conf. Management of Data, pp. 245-256, 1995.

[11] A. Burns, “Scheduling Hard Real-Time Systems: A Review, “Software
Eng. J., vol. 6, no. 3, pp. 116-128, 1991.

Bolla Saikiran et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1082-1085

www.ijcsit.com 1085

