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Abstract: Traditional data warehouses are designed to hold the 
Historical Data. The data warehouse allows update only policy. 
Data Stream is a continuously growing Data from Various 
Sources. Update scheduling in streaming data warehouses, 
which combines the features of traditional data warehouses and 
data stream systems. External sources push append-only data 
streams into the warehouse with a wide range of inter arrival 
times. Traditional data warehouses are typically refreshed 
during downtimes, streaming ware houses are updated as new 
data arrive. We explore the model the streaming warehouse 
update problem as a scheduling problem, where processes that 
load new data into tables, and whose objective is to minimize 
data staleness over time. . We choose a scheduling framework 
that handles the complications encountered by a stream 
warehouse: view hierarchies and priorities, data consistency, 
inability to preempt updates, heterogeneity of update jobs 
caused by different inter arrival times and data volumes among 
different sources, and transient overload. A feature of our 
framework is that scheduling decisions do not depend on 
properties of update jobs, but rather on the effect of update jobs 
on data staleness. We present EDF-P, Max Benefit update 
scheduling algorithms and proves that Max Benefit is giving best 
performance that EDF-P by minimizing data staleness over the 
time. 
 
Keywords : Data warehouse maintenance, Update scheduling, 
Data streaming. 
 

I. INTRODUCTION 
The Application of Data Stream Mining Demands the Newly 
Arrived Data, not on the Historical Data. The Problem is to 
Combine Traditional Data Warehouses and Data Stream 
Systems[1].  In existing system Data Stream Management 
Systems (DSMS) it Supports Simple Analysis and Recently 
Arrived Data. Data Depot also combines the Features of 
Traditional Data Warehouses and Data Stream Management 
System (DSMS).  
Traditional data warehouses are updated during downtimes 
and store layers of complex materialized views over terabytes 
of historical data. On the other hand, Data Stream 
Management Systems (DSMS) support simple analyses on 
recently arrived data in real time. Streaming warehouses such 
as Data Depot these two systems by maintaining a unified 
view of current and historical data. This enables a real-time 
decision support for business-critical applications that receive 
streams of append-only data from external sources. 
Applications include: Online stock trading, where recent 

transactions generated by multiple stock exchanges are 
compared against historical trends in nearly real time to 
identify profit opportunities. Credit card or telephone fraud 
detection, where streams of point-of-sale transactions or call 
details are collected in nearly real time and compared with 
past customer behavior. Network data warehouses maintained 
by Internet Service Providers (ISPs), which collect various 
system logs and traffic summaries to monitor erasure 
correcting code in the file distribution preparation to provide 
redundancies and guarantee the data constancy[2]. This 
construction drastically reduces the communication and 
storage overhead as compared to the traditional replication. 
The goal of a streaming warehouse is to propagate new data 
across all the relevant tables and views as quickly as possible. 
Once new data are loaded, the applications and triggers 
defined on the warehouse can take immediate action. This 
allows businesses to make decisions in nearly real time, 
which may lead to increased profits, improved customer 
satisfaction, and prevention of serious problems that could 
develop if no action was taken. Recent work on streaming 
warehouses has focused on speeding up the Extract-
Transform-Load (ETL) process which was explained in 
Figure1. This Figure1 also describes the Data flow in Data 
Warehouse with the ETL Process[3]. Data coming from 
various external sources to the Data Warehouse and loading 
into the warehouse tables by utilizing the ETL Process.      
   

  
Figure 1: Data warehousing with ETL Process. 
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There has also been work on supporting various warehouse 
maintenance policies, such as immediate, deferred, and 
periodic. However, there has been a little work on choosing, 
of all the tables that are now out-of-date due to the arrival of 
new data, which one should be updated next. This is exactly 
the problem we study in this paper. Immediate view 
maintenance may appear to be a reasonable solution for a 
streaming[4]. That is, whenever new data arrive, we 
immediately update the corresponding “base” table T. After T 
has been updated, we trigger the updates of all the 
materialized views sourced from T, followed by all the views 
defined over those views, and so on. The problem with this 
approach is that new data may arrive on multiple streams, but 
there is no mechanism for limiting the number of tables that 
can be updated simultaneously[5]. Running too many parallel 
updates can degrade performance due to memory and CPU-
cache thrashing, disk-arm thrashing, context switching, etc. 
This motivates the need for a scheduler that limits the number 
of concurrent updates and determines which job to schedule   
next. 
 

II. RELATED WORK 
This section compares the contributions of this paper with 
previous work in three related areas: scheduling, data 
warehousing, and data stream management. 
Scheduling 
The closest work to ours is, which finds the best way to 
schedule updates of tables and views in  
order to maximize data freshness. Aside from using a 
different definition of staleness, our Max Benefit basic 
algorithm is analogous to the max-impact algorithm from 
Labrinidis and Roussopoulos, as is our “Sum” priority 
inheritance technique. Our main innovation is the multi track 
Proportional algorithm for scheduling the large and 
heterogeneous job sets encountered by a Streaming 
warehouse additionally, we propose an update chopping to 
deal with transient overload. Another closely related work is 
which studies the complexity of minimizing the staleness of a 
set of base tables in a streaming warehouse[6]. In general, 
interesting scheduling problems are often NP hard in the 
offline setting and hard to approximate offline. This 
motivates the use of heuristics such as our greedy Max 
Benefit algorithm. While we believe that update scheduling 
in a streaming warehouse is novel, our solution draws from a 
number of recent scheduling results. In particular, there has 
been work on real-time scheduling of heterogeneous tasks on 
a multiprocessor to address the tension between partitioned 
scheduling and global scheduling. The Pair algorithm and its 
variants have been proposed when tasks are perceptible, 
however we must assume that data loading tasks are 
nonpreemptible. Our Proportional algorithm attempts to make 
a fair allocation of resources to nonpreemptible tasks in a 
multitrack setting, and is the first such algorithm of which we 
are aware. Overload management has been addressed in, e.g.. 
However, these algorithms handle overload by dropping jobs, 
while a data warehouse can defer updates for a while, but 

cannot drop them. Derived table relationships are similar to 
precedence constraints among jobs, e.g., a derived table 
cannot be updated until its sources have been updated. 
Previous work on scheduling with precedence constraints 
focused on minimizing the total time needed to compute a set 
of nonrecurring jobs. Our update jobs are recurring, and we 
use the notion of freshness delta to determine when a derived 
table update should be scheduled[7]. There has also been 
work on adding real-time functionality to databases. 
However, most of this work focuses on scheduling read-only 
transactions to achieve some quality of- service guarantees. 
The works closest to ours are  and  which discuss the 
interaction of queries and updates in a firm real-time 
database, i.e., how to install updates to keep the data fresh, 
but also ensure that read transactions meet their deadlines. 
However, their system environments are significantly 
different from ours: transactions can be preempted, all tables 
in the database are “snapshot” tables, and updates are very 
short lived, meaning that they can be deferred until a table is 
queried. Similar work has also appeared in the context of web 
databases, which aims to balance the quality of service of 
read transactions against data freshness. It also assumes a 
“snapshot” model rather than our append-only model.  
Data Warehousing 
There has been some recent work on streaming data 
warehousing, including system design, real-time ETL 
Processing, and continuously inserting a streaming data feed 
at bulk-load speed. These efforts are complementary to our 
work they also aim to minimize data staleness, but they do so 
by reducing the running time of update jobs once the jobs are 
scheduled. A great deal of existing data warehousing research 
has focused on efficient maintenance of various classes of 
materialized views, and is orthogonal to this paper. In and 
discuss consistency issues under various view maintenance 
policies. As discussed earlier, maintaining consistency in a 
streaming data warehouse is simpler due to the append-only 
nature of data streams. There has also been work on 
scheduling when to pull data into a warehouse to satisfy data 
freshness guarantees. This work does not apply to the push-
based stream warehouses studied in this paper, which do not 
have control over the data arrival patterns. Quantifying the 
freshness of a data warehouse was addressed in several 
works[8]. For instance, Adelberg et al. propose two 
definitions: maximum age, which corresponds to the 
definition used in this paper, and unapplied update, which 
defines staleness as the difference between the current time 
and the arrival time of the oldest pending update. Unapplied 
update is not appropriate in a real-time stream warehouse that 
must handle sources with various arrival rates and inter 
arrival times. For example, suppose that two updates have 
arrived simultaneously, one containing 2 minutes of recent 
data from stream 1, and the other carrying one day of data 
from stream 2. Clearly, the table sourced by stream 2 should 
be considered more out-of-date, yet both are equal under 
unapplied update. Cho and Garcia-Molina propose to 
measure the average freshness over time, but their definition 
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of freshness is far simpler than ours: a database object is 
assumed to have a freshness of one if it is up-to-date and zero 
otherwise. 
Data Stream Management 
One important difference between a DSMS and a data stream 
warehouse is that the former only has a limited working 
memory and does not store any part of the stream 
permanently. Another difference is that a DSMS may drop a 
fraction of the incoming elements during overload, whereas a 
streaming data warehouse may defer some update jobs, but 
must eventually execute them. Scheduling in DSMS has been 
discussed in, but all of these are concerned with scheduling 
individual operators inside query plans. 
 

III. SYSTEM MODEL 
A streaming data warehouse. Each data stream is generated 
by an external source, with a batch of new data, consisting of 
one or more records, being pushed to the warehouse with 
period Pi[1]. If the period of a stream is unknown or 
unpredictable, we let the user choose a period with which the 
warehouse should check for new data. Examples of streams 
collected by an Internet Service Provider include router 
performance statistics such as CPU usage, system logs, 
routing table updates, link layer alerts, etc. An important 
property of the data streams in our motivating applications is 
that they are append-only, i.e., existing records are never 
modified or deleted. For example, a stream of average router 
CPU utilization measurement may consist of records with 
fields, and a new data file with updated CPU measurement 
for each router may arrive at the warehouse every 5 minutes. 

 
Figure 2: Streaming Data Warehouse 

 
Warehouse Consistency Following the previous work on data 
warehousing, we want derived tables to reflect the state of 
their sources as of some point in time[9]. Suppose that D is 
derived from T1 and T2, which were last updated at times 
10:00 and 10:05, respectively as shown in figure 2. If T1 and 
T2 incur arbitrary insertions, modifications, and deletions, it 
may not be possible to update D such that it is consistent with 
T1 and T2 as of some point in time, say, 10.00.However, 
tables in a streaming warehouse are not “snapshots” of the 
current state of the data, but rather they collect all the 
(append-only) data that have arrived over time. Since the data 
are append-only, each record has exactly one “version.” For 

now, suppose that data arrive in time stamp order. We can 
extract the state of  T2 as of time 10:00 by selecting records 
with time stamps up to and including 10:00. Using these 
records, we can update D such that it is consistent with T1 
and T2 as of time 10:00. Figure2 shows T1 and T2 are Base 
Tables, Derived table has been created from based tables 
namely T3 and again created another derived table T4 created 
from table T3.we applied EDFP and Maxbenefit algorithms 
on the tables and conducted multiple Experiments. Hence 
update job as Ji and priority as pi. 
Data Staleness we illustrate the staleness as a function of time 
for a base table Ti. Suppose that the first batch of new data 
arrives at time 4. Assume that this batch contains records 
with time stamps up to time 3.Staleness accrues linearly until 
the completion of the first update job at time 5. At that time, 
Ti has all the data up to time 3, and therefore its staleness 
drops to 2.  
Scheduling Model 
Let Ji be the update job corresponding to table Ti. For base 
tables, the period of Ji is equal to the period of its source 
stream. We estimate the period of a Ji corresponding to a 
derived table as the maximum period of any of Ti’s 
ancestors[10]. For base and derived tables, we define the 
freshness delta of Ti, call it _Fi, as the increase in freshness 
after Ji is completed. For instance, when the second batch of 
new data arrives in (at time 7), the table contains data up to 
time 3. Since the update contains data up to time 7, the 
freshness delta is 4. 
Prioritized EDF (EDF-P) 
We tries to order the jobs by assigning priorities. In this 
process ties are breaking by deadlines [7]. We estimate the 
deadline ri +Pi where ri is the last time Ti’s freshness delta 
changed from zero to nonzero, Pi is period of derived table 
[7]. EDF-Partitioned Strategy The EDF-partitioned algorithm 
assigns jobs to tracks in a way that ensures that each track has 
a feasible non preemptive EDF schedule. A feasible schedule 
means that if the local scheduler were to use the EDF 
algorithm to decide which job to schedule next, all jobs 
would meet their deadlines. EDF-partitioned strategy is 
compatible with any local algorithm for scheduling individual 
tracks[2]. The EDF-partitioned algorithm has some 
weaknesses, a collection of jobs with identical periods might 
be partitioned among several tracks[11]. The track promotion 
condition among these jobs and tracks is the same as the 
condition which limits the initial track packing and therefore 
no track promotion will be done. the Earliest-Deadline-First 
(EDF) algorithm orders released jobs by proximity to their 
deadlines. EDF(Earlier Dead Line First) is known to be an 
optimal hard real-time scheduling algorithm for single track. 
Prioritized EDF orders jobs by their priorities, breaking ties 
by deadlines. Here jobs are performed based on the Deadline.   
Max Benefit 
Max Benefit Recall that the goal of the scheduler is to 
minimize the weighted staleness [7]. In this context, the 
benefit of executing a job Ji may be defined as pi ∆ Fi, i.e., its 
priority weighted freshness delta (decrease in staleness). 
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Similarly, the marginal benefit of executing Ji is its benefit 
per unit of execution time: pi ∆ Fi=E∆(Fi). A natural online 
greedy heuristic is to order the jobs by the marginal benefit of 
executing them. We will refer to this heuristic as Max 
Benefit. Since marginal benefit does not depend on the 
period, we can use Max Benefit for periodic and a periodic 
update jobs. one may argue that Max Benefit ignores useful 
information about the release times of future jobs.  This 
algorithm is used to minimize the weighted staleness.  
 

IV. SYSTEM EVALUATION 
Framework to Generate Update Jobs Automatically when the 
Environment is a Simulation Environment and it produces a 
Bunch of Jobs and Send to Data Warehouse for Every 5mins 
automatically. 
Table Relational Graph 
All the Tables of the Warehouse are devided into two types. 
One is Base Table another is a Derived Table (view). Base 
Table is the Primary Tables Whenever New Data is Arrived 
the tables are updated First.  The Derived Tables are the 
Views of an SQL Query. The Derived Tables Depends on the 
Base (or) Source Tables. This Modules Prepares Dependency 
Graph. Assignment Priorities to tables/Views Base and 
Derived Tables has to be Assigned Priority Values Based  on 
Dependency Graph. The Priority Values of Tables are Used 
at the Time of Processing (or) Prioritizing Jobs. 
Job Partitioning 
The System will Recieve a Bulk Number Update Jobs 
Among all the Jobs, Which Job has to be Given High Priority 
and to avoid Datastaless Job Partioning is Required. The 
Module are EDF Partioned Strategy,   Leveraging Idle 
Resources Via Track Promotion and Proportional Partitioning 
Strategy. 
Update Chopping 
The Traditional of a Single Job Updates all the Jobs into a 
Single Queue of Jobs. Lineally all the will be Executed.  The 
Update Chopping Process Divides the Jobs into Priority Jobs 
and Stale Data Jobs. The Stale Data jobs are Given Low 
priority. The High Priority Jobs Executed First. 
Experiments are conducted with EDFP and Maxbenefit 
algorithms for updated scheduling in streaming data 
warehouses by creating base tables T1 and T2. Derived table 
has been created from based tables namely T3 again created 
another derived table T4 created from table T3.we applied 
EDFP and Maxbenefit algorithms on these tables and proved 
that Maxbenefit giving the accurate results.   
 

V. CONCLUSIONS 
In this paper, we motivated, formalized, and solved the 
problem of non preemptively scheduling updates in a real-
time streaming warehouse. We proposed the notion of 
average staleness as a scheduling metric and presented 
scheduling algorithms designed to handle the complex 

environment of a streaming data warehouse. We then 
proposed a scheduling framework that assigns jobs to 
processing tracks and uses basic algorithms to schedule jobs 
within a track. The main feature of our framework is the 
ability to reserve resources for short jobs that often 
correspond to important frequently refreshed tables, while 
avoiding the inefficiencies associated with partitioned 
scheduling techniques. We have implemented some of the 
proposed algorithms in the Data Depot streaming warehouse, 
which is currently used for several very large warehousing 
projects within AT&T. We tested with EDF-P and Max 
Benefit algorithms. Finally we proved that Max Benefit is 
giving best performance that EDF-P by minimizing data staleness 
over the time. As future work, we plan to extend our 
framework with new basic algorithms. We also plan to fine-
tune the Proportional algorithm in our experiments, even the 
aggressive version with “all” allocation still exhibits signs of 
multiple operating domains, and therefore can likely be 
improved upon (however, it is the first algorithm of its class 
that we are aware of). Another interesting problem for future 
work involves choosing the right scheduling “granularity” 
when it is more efficient to update multiple tables together, as 
mentioned. We intend to explore the tradeoffs between 
update efficiency and minimizing staleness in this context.     
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